1-4 Videos Guide

1-4a

- The cross product: Let $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$
$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}$
- $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}

Exercise:

- \quad Find the cross product $\mathbf{a} \times \mathbf{b}$ for $\mathbf{a}=\langle 2,-1,5\rangle$ and $\mathbf{b}=\langle-4,3,8\rangle$.
$1-4 b$
- Geometric applications and interpretations of the cross product
$\circ \quad|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
- If \mathbf{a} and \mathbf{b} are parallel, then $\mathbf{a} \times \mathbf{b}=\mathbf{0}$, the zero vector
- $|\mathbf{a} \times \mathbf{b}|$ gives the area of a parallelogram formed by \mathbf{a} and \mathbf{b}
- Scalar triple product: $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$
- $\quad|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$ gives the volume of a parallelepiped with edges \mathbf{a}, \mathbf{b}, and \mathbf{c}

Exercises:

1-4c

- Find the area of the parallelogram with vertices $P(1,0,2), Q(3,3,3), R(7,5,8)$, and $S(5,2,7)$.
$1-4 d$
- Find a nonzero vector orthogonal to the plane through the points $P(0,0,-3)$, $Q(4,2,0)$, and $R(3,3,1)$, and (b) find the area of triangle $P Q R$.

